Lessons 035 - 036 Two Sample t Test and Paired Data

Wednesday, November 29

Two Sample t Test

- variances or with a large enough sample size to use normal approximations.
- If we have small sample sizes, in a normal population, with

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{m}}} \sim t_{\nu}.$$

We previously considered two sample hypothesis tests with known

unknown variances we can use the trick from single sample testing

Sampling Distribution

The number of degrees of freedom is given by

Two Sample Procedures

- exactly as we have previously seen.
- This procedure will apply to any m, n > 1 when the population is normal.
- sample.

Once the test statistic is formed, hypothesis testing proceeds

• Previously, we required either a known variance or else a large

Pooled Variance Estimation

- Sometimes there is a reason to believe that, theoretically, $\sigma_1^2 = \sigma_2^2$ even when we do not know the value.
- In this case, $var(\overline{X} \overline{Y}) = \sigma$
- We can estimate σ^2 using information from both samples.

$$r^2\left(\frac{1}{n}+\frac{1}{m}\right).$$

$$\hat{\sigma}^2 = S_p^2 = \frac{(n-1)S_1^2 + (m-1)S_2^2}{n+m-2}$$

Sampling Distribution (Pooled Estimator) • If we use S_p^2 to scale the previous estimator we get $(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)$ _____ ~ t_{m+n-2} . $S_p \sqrt{\frac{1}{n} + \frac{1}{m}}$

 We should only use this when there is good reason to believe we can pool the variance.

Paired Data

- So far we have assumed that our two samples are independent of one another.
- This is often not the case.
- - Two treatments on the same individual.
 - Before-and-after testing.
 - Studies on twins.

A common type of dependence observed is data "pairing".

Paired Data: Formally

- In the case of paired data we have two sets of n observations, say X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_n .
- For each j = 1, ..., n, X_j and Y_j are dependent on each other.
- For each non-paired variate, the data remain independent.

 $D_i =$

 Instead of averaging and then differencing, we will difference first.

$$X_i - Y_i$$

Single Sample from Paired Data

• We will have $E[D_i] = \mu_1 - \mu_2$ and we will have

 $\operatorname{var}(D_i) = \sigma_1^2 + \sigma_2^2 - 2\sigma_{12}$

• Here, σ_{12} is the **covariance** between X_i and Y_i .

• Once we have formed D_1, \ldots, D_n we have a single sample.

$cov(X, Y) = E\{(X - E[X])(Y - E[Y])\}.$

A Brief Aside on Covariance:

- We have not *really* discussed the tools to find covariances directly.
- If $X \perp Y$ then cov(X, Y) = 0. For paired observations typically cov(X, Y) > 0.
- The correlation is simply a scaled version of covariance.
- We require the joint probability density function which is a multivariate extension of the PDF.
- If population covariances are required, you will be told them.

Testing with Paired Data

- With D_i formed, then we can take the standard test statistic and use the standard cases for the sampling distribution.

- If X and Y are both normal, so too is D.
- If *n* is large enough, this will behave approximately normally.
- If *n* is small, *D* is normal, can use the t_{n-1} sampling distribution.

$$-(\mu_1 - \mu_2)$$

$$+ \sigma_2^2 - 2\sigma_{12})/n$$

The assumption that data are paired should be used sparingly.