Lessons 035-036 Two Sample t Test and Paired Data

Wednesday, November 29

Two Sample t Test

- We previously considered two sample hypothesis tests with known variances or with a large enough sample size to use normal approximations.
- If we have small sample sizes, in a normal population, with unknown variances we can use the trick from single sample testing

$$
T=\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n}+\frac{s_{2}^{2}}{m}}} \sim t_{\nu}
$$

Sampling Distribution

- The number of degrees of freedom is given by

$$
\nu=\frac{\left(\frac{s_{1}^{2}}{n}+\frac{s_{2}^{2}}{m}\right)^{2}}{\frac{s_{1}^{4} / n^{2}}{n-1}+\frac{s_{2}^{4} / m^{2}}{m-1}}
$$

- In practice, we will simply use $\nu=\min \{m-1, n-1\}$ almost always.

Two Sample Procedures

- Once the test statistic is formed, hypothesis testing proceeds exactly as we have previously seen.
- This procedure will apply to any $m, n>1$ when the population is normal.
- Previously, we required either a known variance or else a large sample.

Pooled Variance Estimation

- Sometimes there is a reason to believe that, theoretically, $\sigma_{1}^{2}=\sigma_{2}^{2}$ even when we do not know the value.
- In this case, $\operatorname{var}(\bar{X}-\bar{Y})=\sigma^{2}\left(\frac{1}{n}+\frac{1}{m}\right)$.
- We can estimate σ^{2} using information from both samples.

$$
\widehat{\sigma}^{2}=S_{p}^{2}=\frac{(n-1) S_{1}^{2}+(m-1) S_{2}^{2}}{n+m-2}
$$

Sampling Distribution (Pooled Estimator)

- If we use S_{p}^{2} to scale the previous estimator we get

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{S_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}} \sim t_{m+n-2}
$$

- We should only use this when there is good reason to believe we can pool the variance.

Paired Data

- So far we have assumed that our two samples are independent of one another.
- This is often not the case.
- A common type of dependence observed is data "pairing".
- Two treatments on the same individual.
- Before-and-after testing.
- Studies on twins.

Paired Data: Formally

- In the case of paired data we have two sets of n observations, say $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$.
- For each $j=1, \ldots, n, X_{j}$ and Y_{j} are dependent on each other.
- For each non-paired variate, the data remain independent.
- Instead of averaging and then differencing, we will difference first.

$$
D_{i}=X_{i}-Y_{i}
$$

Single Sample from Paired Data

- Once we have formed D_{1}, \ldots, D_{n} we have a single sample.
- We will have $E\left[D_{i}\right]=\mu_{1}-\mu_{2}$ and we will have

$$
\operatorname{var}\left(D_{i}\right)=\sigma_{1}^{2}+\sigma_{2}^{2}-2 \sigma_{12}
$$

- Here, σ_{12} is the covariance between X_{i} and Y_{i}.

$$
\operatorname{cov}(X, Y)=E\{(X-E[X])(Y-E[Y])\}
$$

A Brief Aside on Covariance:

- We have not really discussed the tools to find covariances directly.
- If $X \perp Y$ then $\operatorname{cov}(X, Y)=0$. For paired observations typically $\operatorname{cov}(X, Y)>0$.
- The correlation is simply a scaled version of covariance.
- We require the joint probability density function which is a multivariate extension of the PDF.
- If population covariances are required, you will be told them.

Testing with Paired Data

- With D_{i} formed, then we can take the standard test statistic and use the standard cases for the sampling distribution.

$$
T=\frac{\bar{D}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\left(\sigma_{1}^{2}+\sigma_{2}^{2}-2 \sigma_{12}\right) / n}}
$$

- If X and Y are both normal, so too is D.
- If n is large enough, this will behave approximately normally.
- If n is small, D is normal, can use the t_{n-1} sampling distribution.

The assumption that data are paired should be used sparingly.

